A Reconstruction Method for Missing Data in Power System Measurement Based on LSGAN

نویسندگان

چکیده

The integrity of data is an essential basis for analyzing power system operating status based on data. Improper handling measurement sampling, information transmission, and storage can lead to loss, thus destroying the hindering mining. Traditional imputation methods are suitable low-latitude, low-missing-rate scenarios. In high-latitude, high-missing-rate scenarios, applicability traditional in doubt. This paper proposes a reconstruction method missing LSGAN (Least Squares Generative Adversarial Networks). designed train unsupervized learning mode, enabling neural network automatically learn data, distribution patterns, other complex correlations that difficult model explicitly. It then optimizes generator parameters using constraint relations implied by true sample trained Generator generate highly accurate reconstruct proposed approach entirely data-driven does not involve mechanistic modeling. still case high latitude loss rate. We test effectiveness comparing three GAN derivation our experiments. experimental results show feasible effective, accuracy reconstructed higher while taking into account computational efficiency.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

application of upfc based on svpwm for power quality improvement

در سالهای اخیر،اختلالات کیفیت توان مهمترین موضوع می باشد که محققان زیادی را برای پیدا کردن راه حلی برای حل آن علاقه مند ساخته است.امروزه کیفیت توان در سیستم قدرت برای مراکز صنعتی،تجاری وکاربردهای بیمارستانی مسئله مهمی می باشد.مشکل ولتاژمثل شرایط افت ولتاژواضافه جریان ناشی از اتصال کوتاه مدار یا وقوع خطا در سیستم بیشتر مورد توجه می باشد. برای مطالعه افت ولتاژ واضافه جریان،محققان زیادی کار کرده ...

15 صفحه اول

A system for reconstruction of missing data

This paper presents a new technique for interpolating missing data in image sequences. A 3D autoregressive (AR) model is employed and a sampling based interpolator is developed in which reconstructed data is generated as a typical realization from the underlying AR process. In this way a perceptually improved result is achieved. A hierarchical gradient-based motion estimator, robust in regions ...

متن کامل

A New Method for Multisensor Data Fusion Based on Wavelet Transform in a Chemical Plant

This paper presents a new multi-sensor data fusion method based on the combination of wavelet transform (WT) and extended Kalman filter (EKF). Input data are first filtered by a wavelet transform via Daubechies wavelet “db4” functions and the filtered data are then fused based on variance weights in terms of minimum mean square error. The fused data are finally treated by extended Kalman filter...

متن کامل

Missing Texture Reconstruction Method Based on Perceptually Optimized Algorithm

This paper presents a simple and effective missing texture reconstruction method based on a perceptually optimized algorithm. The proposed method utilizes the structural similarity (SSIM) index as a new visual quality measure for reconstructing missing areas. Furthermore, in order to adaptively reconstruct target images containing several kinds of textures, the following two novel approaches ar...

متن کامل

Developing a Method for Increasing Accuracy and Precision in Measurement System Analysis: A Fuzzy Approach

Measurement systems analysis (MSA) has been applied in different aspect of industrial assessments to evaluate various types of quantitative and qualitative measures. Qualification of a measurement system depends on two important features: accuracy and precision. Since the capability of each quality system is severely related to the capability of its measurement system, the weakness of the two...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Frontiers in Energy Research

سال: 2021

ISSN: ['2296-598X']

DOI: https://doi.org/10.3389/fenrg.2021.651807